aboutsummaryrefslogtreecommitdiff
path: root/Ryujinx.Graphics.Nvdec.Vp9/LoopFilter.cs
diff options
context:
space:
mode:
Diffstat (limited to 'Ryujinx.Graphics.Nvdec.Vp9/LoopFilter.cs')
-rw-r--r--Ryujinx.Graphics.Nvdec.Vp9/LoopFilter.cs418
1 files changed, 418 insertions, 0 deletions
diff --git a/Ryujinx.Graphics.Nvdec.Vp9/LoopFilter.cs b/Ryujinx.Graphics.Nvdec.Vp9/LoopFilter.cs
new file mode 100644
index 00000000..13006934
--- /dev/null
+++ b/Ryujinx.Graphics.Nvdec.Vp9/LoopFilter.cs
@@ -0,0 +1,418 @@
+using Ryujinx.Common.Memory;
+using Ryujinx.Graphics.Nvdec.Vp9.Common;
+using Ryujinx.Graphics.Nvdec.Vp9.Types;
+using System;
+using System.Runtime.InteropServices;
+
+namespace Ryujinx.Graphics.Nvdec.Vp9
+{
+ internal static class LoopFilter
+ {
+ public const int MaxLoopFilter = 63;
+
+ public const int MaxRefLfDeltas = 4;
+ public const int MaxModeLfDeltas = 2;
+
+ // 64 bit masks for left transform size. Each 1 represents a position where
+ // we should apply a loop filter across the left border of an 8x8 block
+ // boundary.
+ //
+ // In the case of TX_16X16 -> ( in low order byte first we end up with
+ // a mask that looks like this
+ //
+ // 10101010
+ // 10101010
+ // 10101010
+ // 10101010
+ // 10101010
+ // 10101010
+ // 10101010
+ // 10101010
+ //
+ // A loopfilter should be applied to every other 8x8 horizontally.
+ private static readonly ulong[] Left64X64TxformMask = new ulong[]
+ {
+ 0xffffffffffffffffUL, // TX_4X4
+ 0xffffffffffffffffUL, // TX_8x8
+ 0x5555555555555555UL, // TX_16x16
+ 0x1111111111111111UL, // TX_32x32
+ };
+
+ // 64 bit masks for above transform size. Each 1 represents a position where
+ // we should apply a loop filter across the top border of an 8x8 block
+ // boundary.
+ //
+ // In the case of TX_32x32 -> ( in low order byte first we end up with
+ // a mask that looks like this
+ //
+ // 11111111
+ // 00000000
+ // 00000000
+ // 00000000
+ // 11111111
+ // 00000000
+ // 00000000
+ // 00000000
+ //
+ // A loopfilter should be applied to every other 4 the row vertically.
+ private static readonly ulong[] Above64X64TxformMask = new ulong[]
+ {
+ 0xffffffffffffffffUL, // TX_4X4
+ 0xffffffffffffffffUL, // TX_8x8
+ 0x00ff00ff00ff00ffUL, // TX_16x16
+ 0x000000ff000000ffUL, // TX_32x32
+ };
+
+ // 64 bit masks for prediction sizes (left). Each 1 represents a position
+ // where left border of an 8x8 block. These are aligned to the right most
+ // appropriate bit, and then shifted into place.
+ //
+ // In the case of TX_16x32 -> ( low order byte first ) we end up with
+ // a mask that looks like this :
+ //
+ // 10000000
+ // 10000000
+ // 10000000
+ // 10000000
+ // 00000000
+ // 00000000
+ // 00000000
+ // 00000000
+ private static readonly ulong[] LeftPredictionMask = new ulong[]
+ {
+ 0x0000000000000001UL, // BLOCK_4X4,
+ 0x0000000000000001UL, // BLOCK_4X8,
+ 0x0000000000000001UL, // BLOCK_8X4,
+ 0x0000000000000001UL, // BLOCK_8X8,
+ 0x0000000000000101UL, // BLOCK_8X16,
+ 0x0000000000000001UL, // BLOCK_16X8,
+ 0x0000000000000101UL, // BLOCK_16X16,
+ 0x0000000001010101UL, // BLOCK_16X32,
+ 0x0000000000000101UL, // BLOCK_32X16,
+ 0x0000000001010101UL, // BLOCK_32X32,
+ 0x0101010101010101UL, // BLOCK_32X64,
+ 0x0000000001010101UL, // BLOCK_64X32,
+ 0x0101010101010101UL, // BLOCK_64X64
+ };
+
+ // 64 bit mask to shift and set for each prediction size.
+ private static readonly ulong[] AbovePredictionMask = new ulong[]
+ {
+ 0x0000000000000001UL, // BLOCK_4X4
+ 0x0000000000000001UL, // BLOCK_4X8
+ 0x0000000000000001UL, // BLOCK_8X4
+ 0x0000000000000001UL, // BLOCK_8X8
+ 0x0000000000000001UL, // BLOCK_8X16,
+ 0x0000000000000003UL, // BLOCK_16X8
+ 0x0000000000000003UL, // BLOCK_16X16
+ 0x0000000000000003UL, // BLOCK_16X32,
+ 0x000000000000000fUL, // BLOCK_32X16,
+ 0x000000000000000fUL, // BLOCK_32X32,
+ 0x000000000000000fUL, // BLOCK_32X64,
+ 0x00000000000000ffUL, // BLOCK_64X32,
+ 0x00000000000000ffUL, // BLOCK_64X64
+ };
+
+ // 64 bit mask to shift and set for each prediction size. A bit is set for
+ // each 8x8 block that would be in the left most block of the given block
+ // size in the 64x64 block.
+ private static readonly ulong[] SizeMask = new ulong[]
+ {
+ 0x0000000000000001UL, // BLOCK_4X4
+ 0x0000000000000001UL, // BLOCK_4X8
+ 0x0000000000000001UL, // BLOCK_8X4
+ 0x0000000000000001UL, // BLOCK_8X8
+ 0x0000000000000101UL, // BLOCK_8X16,
+ 0x0000000000000003UL, // BLOCK_16X8
+ 0x0000000000000303UL, // BLOCK_16X16
+ 0x0000000003030303UL, // BLOCK_16X32,
+ 0x0000000000000f0fUL, // BLOCK_32X16,
+ 0x000000000f0f0f0fUL, // BLOCK_32X32,
+ 0x0f0f0f0f0f0f0f0fUL, // BLOCK_32X64,
+ 0x00000000ffffffffUL, // BLOCK_64X32,
+ 0xffffffffffffffffUL, // BLOCK_64X64
+ };
+
+ // These are used for masking the left and above borders.
+ private const ulong LeftBorder = 0x1111111111111111UL;
+ private const ulong AboveBorder = 0x000000ff000000ffUL;
+
+ // 16 bit masks for uv transform sizes.
+ private static readonly ushort[] Left64X64TxformMaskUv = new ushort[]
+ {
+ 0xffff, // TX_4X4
+ 0xffff, // TX_8x8
+ 0x5555, // TX_16x16
+ 0x1111, // TX_32x32
+ };
+
+ private static readonly ushort[] Above64X64TxformMaskUv = new ushort[]
+ {
+ 0xffff, // TX_4X4
+ 0xffff, // TX_8x8
+ 0x0f0f, // TX_16x16
+ 0x000f, // TX_32x32
+ };
+
+ // 16 bit left mask to shift and set for each uv prediction size.
+ private static readonly ushort[] LeftPredictionMaskUv = new ushort[]
+ {
+ 0x0001, // BLOCK_4X4,
+ 0x0001, // BLOCK_4X8,
+ 0x0001, // BLOCK_8X4,
+ 0x0001, // BLOCK_8X8,
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8,
+ 0x0001, // BLOCK_16X16,
+ 0x0011, // BLOCK_16X32,
+ 0x0001, // BLOCK_32X16,
+ 0x0011, // BLOCK_32X32,
+ 0x1111, // BLOCK_32X64
+ 0x0011, // BLOCK_64X32,
+ 0x1111, // BLOCK_64X64
+ };
+
+ // 16 bit above mask to shift and set for uv each prediction size.
+ private static readonly ushort[] AbovePredictionMaskUv = new ushort[]
+ {
+ 0x0001, // BLOCK_4X4
+ 0x0001, // BLOCK_4X8
+ 0x0001, // BLOCK_8X4
+ 0x0001, // BLOCK_8X8
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8
+ 0x0001, // BLOCK_16X16
+ 0x0001, // BLOCK_16X32,
+ 0x0003, // BLOCK_32X16,
+ 0x0003, // BLOCK_32X32,
+ 0x0003, // BLOCK_32X64,
+ 0x000f, // BLOCK_64X32,
+ 0x000f, // BLOCK_64X64
+ };
+
+ // 64 bit mask to shift and set for each uv prediction size
+ private static readonly ushort[] SizeMaskUv = new ushort[]
+ {
+ 0x0001, // BLOCK_4X4
+ 0x0001, // BLOCK_4X8
+ 0x0001, // BLOCK_8X4
+ 0x0001, // BLOCK_8X8
+ 0x0001, // BLOCK_8X16,
+ 0x0001, // BLOCK_16X8
+ 0x0001, // BLOCK_16X16
+ 0x0011, // BLOCK_16X32,
+ 0x0003, // BLOCK_32X16,
+ 0x0033, // BLOCK_32X32,
+ 0x3333, // BLOCK_32X64,
+ 0x00ff, // BLOCK_64X32,
+ 0xffff, // BLOCK_64X64
+ };
+
+ private const ushort LeftBorderUv = 0x1111;
+ private const ushort AboveBorderUv = 0x000f;
+
+ private static readonly int[] ModeLfLut = new int[]
+ {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
+ 1, 1, 0, 1 // INTER_MODES (ZEROMV == 0)
+ };
+
+ private static byte GetFilterLevel(ref LoopFilterInfoN lfiN, ref ModeInfo mi)
+ {
+ return lfiN.Lvl[mi.SegmentId][mi.RefFrame[0]][ModeLfLut[(int)mi.Mode]];
+ }
+
+ private static ref LoopFilterMask GetLfm(ref Types.LoopFilter lf, int miRow, int miCol)
+ {
+ return ref lf.Lfm[(miCol >> 3) + ((miRow >> 3) * lf.LfmStride)];
+ }
+
+ // 8x8 blocks in a superblock. A "1" represents the first block in a 16x16
+ // or greater area.
+ private static readonly byte[][] FirstBlockIn16x16 = new byte[][]
+ {
+ new byte[] { 1, 0, 1, 0, 1, 0, 1, 0 }, new byte[] { 0, 0, 0, 0, 0, 0, 0, 0 },
+ new byte[] { 1, 0, 1, 0, 1, 0, 1, 0 }, new byte[] { 0, 0, 0, 0, 0, 0, 0, 0 },
+ new byte[] { 1, 0, 1, 0, 1, 0, 1, 0 }, new byte[] { 0, 0, 0, 0, 0, 0, 0, 0 },
+ new byte[] { 1, 0, 1, 0, 1, 0, 1, 0 }, new byte[] { 0, 0, 0, 0, 0, 0, 0, 0 }
+ };
+
+ // This function sets up the bit masks for a block represented
+ // by miRow, miCol in a 64x64 region.
+ public static void BuildMask(ref Vp9Common cm, ref ModeInfo mi, int miRow, int miCol, int bw, int bh)
+ {
+ BlockSize blockSize = mi.SbType;
+ TxSize txSizeY = mi.TxSize;
+ ref LoopFilterInfoN lfiN = ref cm.LfInfo;
+ int filterLevel = GetFilterLevel(ref lfiN, ref mi);
+ TxSize txSizeUv = Luts.UvTxsizeLookup[(int)blockSize][(int)txSizeY][1][1];
+ ref LoopFilterMask lfm = ref GetLfm(ref cm.Lf, miRow, miCol);
+ ref ulong leftY = ref lfm.LeftY[(int)txSizeY];
+ ref ulong aboveY = ref lfm.AboveY[(int)txSizeY];
+ ref ulong int4X4Y = ref lfm.Int4x4Y;
+ ref ushort leftUv = ref lfm.LeftUv[(int)txSizeUv];
+ ref ushort aboveUv = ref lfm.AboveUv[(int)txSizeUv];
+ ref ushort int4X4Uv = ref lfm.Int4x4Uv;
+ int rowInSb = (miRow & 7);
+ int colInSb = (miCol & 7);
+ int shiftY = colInSb + (rowInSb << 3);
+ int shiftUv = (colInSb >> 1) + ((rowInSb >> 1) << 2);
+ int buildUv = FirstBlockIn16x16[rowInSb][colInSb];
+
+ if (filterLevel == 0)
+ {
+ return;
+ }
+ else
+ {
+ int index = shiftY;
+ int i;
+ for (i = 0; i < bh; i++)
+ {
+ MemoryMarshal.CreateSpan(ref lfm.LflY[index], 64 - index).Slice(0, bw).Fill((byte)filterLevel);
+ index += 8;
+ }
+ }
+
+ // These set 1 in the current block size for the block size edges.
+ // For instance if the block size is 32x16, we'll set:
+ // above = 1111
+ // 0000
+ // and
+ // left = 1000
+ // = 1000
+ // NOTE : In this example the low bit is left most ( 1000 ) is stored as
+ // 1, not 8...
+ //
+ // U and V set things on a 16 bit scale.
+ //
+ aboveY |= AbovePredictionMask[(int)blockSize] << shiftY;
+ leftY |= LeftPredictionMask[(int)blockSize] << shiftY;
+
+ if (buildUv != 0)
+ {
+ aboveUv |= (ushort)(AbovePredictionMaskUv[(int)blockSize] << shiftUv);
+ leftUv |= (ushort)(LeftPredictionMaskUv[(int)blockSize] << shiftUv);
+ }
+
+ // If the block has no coefficients and is not intra we skip applying
+ // the loop filter on block edges.
+ if (mi.Skip != 0 && mi.IsInterBlock())
+ {
+ return;
+ }
+
+ // Add a mask for the transform size. The transform size mask is set to
+ // be correct for a 64x64 prediction block size. Mask to match the size of
+ // the block we are working on and then shift it into place.
+ aboveY |= (SizeMask[(int)blockSize] & Above64X64TxformMask[(int)txSizeY]) << shiftY;
+ leftY |= (SizeMask[(int)blockSize] & Left64X64TxformMask[(int)txSizeY]) << shiftY;
+
+ if (buildUv != 0)
+ {
+ aboveUv |= (ushort)((SizeMaskUv[(int)blockSize] & Above64X64TxformMaskUv[(int)txSizeUv]) << shiftUv);
+ leftUv |= (ushort)((SizeMaskUv[(int)blockSize] & Left64X64TxformMaskUv[(int)txSizeUv]) << shiftUv);
+ }
+
+ // Try to determine what to do with the internal 4x4 block boundaries. These
+ // differ from the 4x4 boundaries on the outside edge of an 8x8 in that the
+ // internal ones can be skipped and don't depend on the prediction block size.
+ if (txSizeY == TxSize.Tx4x4)
+ {
+ int4X4Y |= SizeMask[(int)blockSize] << shiftY;
+ }
+
+ if (buildUv != 0 && txSizeUv == TxSize.Tx4x4)
+ {
+ int4X4Uv |= (ushort)((SizeMaskUv[(int)blockSize] & 0xffff) << shiftUv);
+ }
+ }
+
+ public static unsafe void ResetLfm(ref Vp9Common cm)
+ {
+ if (cm.Lf.FilterLevel != 0)
+ {
+ MemoryUtil.Fill(cm.Lf.Lfm.ToPointer(), new LoopFilterMask(), ((cm.MiRows + (Constants.MiBlockSize - 1)) >> 3) * cm.Lf.LfmStride);
+ }
+ }
+
+ private static void UpdateSharpness(ref LoopFilterInfoN lfi, int sharpnessLvl)
+ {
+ int lvl;
+
+ // For each possible value for the loop filter fill out limits
+ for (lvl = 0; lvl <= MaxLoopFilter; lvl++)
+ {
+ // Set loop filter parameters that control sharpness.
+ int blockInsideLimit = lvl >> ((sharpnessLvl > 0 ? 1 : 0) + (sharpnessLvl > 4 ? 1 : 0));
+
+ if (sharpnessLvl > 0)
+ {
+ if (blockInsideLimit > (9 - sharpnessLvl))
+ {
+ blockInsideLimit = (9 - sharpnessLvl);
+ }
+ }
+
+ if (blockInsideLimit < 1)
+ {
+ blockInsideLimit = 1;
+ }
+
+ lfi.Lfthr[lvl].Lim.ToSpan().Fill((byte)blockInsideLimit);
+ lfi.Lfthr[lvl].Mblim.ToSpan().Fill((byte)(2 * (lvl + 2) + blockInsideLimit));
+ }
+ }
+
+ public static void LoopFilterFrameInit(ref Vp9Common cm, int defaultFiltLvl)
+ {
+ int segId;
+ // nShift is the multiplier for lfDeltas
+ // the multiplier is 1 for when filterLvl is between 0 and 31;
+ // 2 when filterLvl is between 32 and 63
+ int scale = 1 << (defaultFiltLvl >> 5);
+ ref LoopFilterInfoN lfi = ref cm.LfInfo;
+ ref Types.LoopFilter lf = ref cm.Lf;
+ ref Segmentation seg = ref cm.Seg;
+
+ // Update limits if sharpness has changed
+ if (lf.LastSharpnessLevel != lf.SharpnessLevel)
+ {
+ UpdateSharpness(ref lfi, lf.SharpnessLevel);
+ lf.LastSharpnessLevel = lf.SharpnessLevel;
+ }
+
+ for (segId = 0; segId < Constants.MaxSegments; segId++)
+ {
+ int lvlSeg = defaultFiltLvl;
+ if (seg.IsSegFeatureActive(segId, SegLvlFeatures.SegLvlAltLf) != 0)
+ {
+ int data = seg.GetSegData(segId, SegLvlFeatures.SegLvlAltLf);
+ lvlSeg = Math.Clamp(seg.AbsDelta == Constants.SegmentAbsData ? data : defaultFiltLvl + data, 0, MaxLoopFilter);
+ }
+
+ if (!lf.ModeRefDeltaEnabled)
+ {
+ // We could get rid of this if we assume that deltas are set to
+ // zero when not in use; encoder always uses deltas
+ MemoryMarshal.Cast<Array2<byte>, byte>(lfi.Lvl[segId].ToSpan()).Fill((byte)lvlSeg);
+ }
+ else
+ {
+ int refr, mode;
+ int intraLvl = lvlSeg + lf.RefDeltas[Constants.IntraFrame] * scale;
+ lfi.Lvl[segId][Constants.IntraFrame][0] = (byte)Math.Clamp(intraLvl, 0, MaxLoopFilter);
+
+ for (refr = Constants.LastFrame; refr < Constants.MaxRefFrames; ++refr)
+ {
+ for (mode = 0; mode < MaxModeLfDeltas; ++mode)
+ {
+ int interLvl = lvlSeg + lf.RefDeltas[refr] * scale + lf.ModeDeltas[mode] * scale;
+ lfi.Lvl[segId][refr][mode] = (byte)Math.Clamp(interLvl, 0, MaxLoopFilter);
+ }
+ }
+ }
+ }
+ }
+ }
+}