| Age | Commit message (Collapse) | Author |
|
Warnings: Fixed a few missing-return warnings in video_core.
|
|
|
|
There is currently no stage tracking, a client is considered "Connected" when it receives the EAPoL Logoff packet from the server, this is not yet implemented.
|
|
is called, up to 15 beacons at the same time, removing any older beacon frames when the limit is exceeded.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# This is the 1st commit message:
qt: Add web configuration tab.
# The commit message #2 will be skipped:
# fixup! qt: Add web configuration tab.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* added a SidebySide Layout
* Reworked, so both screen have the same height and cleaned up screen translates.
* added the option in the UI, hope this is the right way to do it. formated framebuffer_layout.cpp
* delete the x64 files
* deleted ui_configure_graphics.h
* added Option for the Layout in the xml
* got rid of SIDE_BY_SIDE_ASPECT_RATIO because it was useless. pulled translate into variables
* changed shift variables to u32 and moved them in their respective branch. remove notr="true" for the Screen layout drop down
* reworked intends :). changed function description for SideFrameLayout
* some description reworking
|
|
|
|
|
|
|
|
|
|
|
|
Kernel/HLE: Use a mutex to synchronize access to the HLE kernel state between the cpu thread and any other possible threads that might touch the kernel (network thread, etc).
|
|
Kernel/Threads: Don't immediately switch to the new main thread when loading a new process.
|
|
operation falls outside of the fast path, for it might perform an MMIO operation.
|
|
between the cpu thread and any other possible threads that might touch the kernel (network thread, etc).
This mutex is acquired in SVC::CallSVC, ie, as soon as the guest application enters the HLE kernel, and should be acquired by the aforementioned threads before modifying kernel structures.
|
|
Fixed some warnings in the core project.
|
|
|
|
|
|
|
|
|
|
a new process.
This is necessary for loading multiple processes at the same time.
The main thread will be automatically scheduled when necessary once the scheduler runs.
|
|
|
|
values.
|
|
shared memory objects.
|
|
ExecuteInstructions.
|
|
instruction cache.
Fixes a few warnings.
|
|
|
|
This function is called in clipping, before the pespective divide, and is not used in later rasterization. Thus it doesn't need perspective correction.
|
|
hwtested. Current implementation is the correct behavior
|
|
shader and fragment shader
|
|
|
|
SwRasterizer/Lighting: implement geometric factor
|
|
Refactor MotionEmu into a InputDevice
|
|
|
|
SwRasterizer/Lighting: implement spot light
|
|
* Network: Set and send the game information over enet
Added Callbacks for RoomMember and GetMemberList to Room in preparation for web_services.
|
|
The geometry pipeline manages data transfer between VS, GS and primitive assembler. It has known four modes:
- no GS mode: sends VS output directly to the primitive assembler (what citra currently does)
- GS mode 0: sends VS output to GS input registers, and sends GS output to primitive assembler
- GS mode 1: sends VS output to GS uniform registers, and sends GS output to primitive assembler. It also takes an index from the index buffer at the beginning of each primitive for determine the primitive size.
- GS mode 2: similar to mode 1, but doesn't take the index and uses a fixed primitive size.
hwtest shows that immediate mode also supports GS (at least for mode 0), so the geometry pipeline gets refactored into its own class for supporting both drawing mode.
In the immediate mode, some games don't set the pipeline registers to a valid value until the first attribute input, so a geometry pipeline reset flag is set in `pipeline.vs_default_attributes_setup.index` trigger, and the actual pipeline reconfigure is triggered in the first attribute input.
In the normal drawing mode with index buffer, the vertex cache is a little bit modified to support the geometry pipeline. Instead of OutputVertex, it now holds AttributeBuffer, which is the input to the geometry pipeline. The AttributeBuffer->OutputVertex conversion is done inside the pipeline vertex handler. The actual hardware vertex cache is believed to be implemented in a similar way (because this is the only way that makes sense).
Both geometry pipeline and GS unit rely on states preservation across drawing call, so they are put into the global state. In the future, the other three vertex shader units should be also placed in the global state, and a scheduler should be implemented on top of the four units. Note that the current gs_unit already allows running VS on it in the future.
|